PROBLEM 3

EXERCISE 3.1

Construct the truth table for the statement(¬p)^q.

     P       q    ¬p (¬p)^q
     T       T      F      F
     T       F      F      F
     F       T      T      T
     F       F      T       F

EXERCISE 3.2

By constructing the truth table, show that ¬(¬p) is logically equivalent to p.∨

     P       ¬p    ¬(¬p)
     T       F      T
     F       T      F

EXERCISE 3.3

Construct the truth tables for p⇒(q∨r).Is the statement logically equivalent to (p⇒q)∨(p⇒r)

     p q r q∨r P⇒( q∨r) p ⇒q p⇒r (p ⇒q)∨(p⇒r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
F T T T T T T T
F F T T T T T T
F T F T T T T T
T F F F F F F F
F F F F T T T T

EXERCISE 3.4

Write down the converse of the following statement

Q.   If n is the multiple of 3 then n is not the multiple of 7

Ans: If n is not the multiple of 7 then n is the multiple of 3.

EXERCISE 3.5

Write down the contrapositive forms of the statements

Q.     If n is a multiple of 7 then n is not a multiple of 3

Ans: If n is a multiple of 3 then n is not a multiple of 7

Q.   If n is a multiple of 12 then n is a multiple of 4

Ans:  If n is not a multiple of 4 then n is not multiple of 12.